## Maximum Time: 3 hours

Maximum Score: 100
If you use a result proven in class then please state it clearly and verify the hypothesis while using the same.

1. Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of independent random variables.
(a) (10 points) Suppose that

$$
E\left[X_{n}\right]=0 \quad \text { and } \quad 0 \leq E\left[X_{n}^{2}\right] \leq 1 \text { for all } n \geq 1
$$

Show that for any $\alpha>\frac{1}{2}, \frac{1}{n^{\alpha}} \sum_{i=1}^{n} X_{i}$ converges to 0 in probability.
(b) Suppose $X_{n} \sim X$
i. (5 points) Show that $\frac{X_{n}}{n}$ converges to 0 in probability.
ii. (10 points) Provide necessary and sufficient conditions for $\frac{X_{n}}{n}$ to converge to 0 with probability 1.
2. Let $X_{n}$ be a Markov chain on $S$ with transition matrix $P$ and initial distribution $\mu$. .
(a) (5 points) Let $A$ be an event. Does it necessarily imply that

$$
\mathbb{P}\left(X_{n}=j \mid X_{n-1} \in A, X_{n-2}=i_{n-2}, \ldots, X_{0}=i_{0}\right)=\mathbb{P}\left(X_{n}=j \mid X_{n-1} \in A\right)
$$

(b) Suppose $S=\mathbb{Z}$, the tranistion matrix $P$ given by

$$
p_{i j}= \begin{cases}p & \text { if } j=i+1 \\ 1-p & \text { if } j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

where $0<p<1$, and suppose $\mu(\{0\})=1$.
i. (10 points) Find the best possible $\mu(a, p)$ such that

$$
\mathbb{P}\left(X_{n} \geq n a\right) \leq \exp (-n \mu(a, p)) \text { for all } a>2 p-1
$$

(c) Let $S$ be $\{0,1,2, \ldots, L\}$, the transition matrix $P=\left[p_{i j}\right]$ be given by

$$
p_{i j}= \begin{cases}1 & \text { if } j=0, i=0, \text { and } j=L, i=L \\ p & \text { if } j=i+1, i \neq 0, i \neq L \\ 1-p & \text { if } j=i-1, i \neq 0, i \neq L \\ 0 & \text { otherwise }\end{cases}
$$

i. (5 points) Decide if the chain is irreducible.
ii. (5 points) For each $i \in S$, find the period of $i$.
iii. (10 points) Compute $h: S \rightarrow[0,1]$ given by $h(i)=\mathbb{P}\left(\sigma_{\{0\}}<\sigma_{\{L\}} \mid X_{0}=i\right)$. with $\sigma_{m}=\inf \left\{k \geq 0: X_{k}=m\right\}$.
3. Let $X,\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
(a) (5 points)Suppose $X_{n}$ is a Gamma $\left(\frac{n}{2}, \frac{1}{2}\right)$, then show that $\frac{X_{n}-n}{\sqrt{n}}$ converges in distribution to a standard Normal random variable.
(b) (10 points) Suppose $X$ has a probability density funciton $f: \mathbb{R} \rightarrow[0, \infty)$. Show that $X_{n}$ converges in distribution to $X$ if and only if $\mathbb{P}\left(a<X_{n} \leq b\right) \rightarrow \mathbb{P}(a<X \leq b)$ as $n \rightarrow \infty$ for all $a, b \in \mathbb{R}$.
(c) (10 points) Suppose $X_{n}$ converges to $X$ in distribution as $n \rightarrow \infty$ then show that $X_{n}$ is tight.
4. Let $N>0$ be a fixed natural number. Let

$$
\Omega_{N}=\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right): \omega_{i} \in\{-1,1\}\right\} \equiv\{-1,1\}^{N}
$$

and $\mathcal{A}_{N}$ is the collection of all subsets of $\Omega_{N}$. Define $P: \mathcal{A}_{N} \rightarrow[0,1]$, by

$$
P(A)=\frac{|A|}{2^{N}}
$$

For $1 \leq k \leq N$, let $X_{k}: \Omega_{N} \rightarrow\{-1,1\}$ given by $X_{k}(\omega)=\omega_{k}$ denote the displacement in the $k$-th step of the walk and for $1 \leq n \leq N$ let

$$
S_{n}(\omega)=\sum_{k=1}^{n} X_{k}(\omega)
$$

denote the position of the random walk at time $n$.
(a) (5 points) Show that $P$ is a probability on $\left(\Omega_{N}, \mathcal{A}_{N}\right)$.
(b) (5 points) Show that $P\left(X_{k}=1\right)=P\left(X_{k}=-1\right)=\frac{1}{2}$ for all $1 \leq k \leq n$ and that $X_{1}, X_{2}, \ldots X_{N}$ are independent.
(c) (5 points) Suppose $0<k_{1}<k_{2}<k_{3}<N$. Show that $S_{k_{2}}-S_{k_{1}}$ and $S_{k_{3}}-S_{k_{2}}$ are independent.
(d) (5 points) Suppose for $0<k<m<N, a, b \in \mathbb{Z}$ we have $P\left(S_{k}=a\right)>0$ then show that

$$
P\left(S_{m}=b \mid S_{k}=a\right)=P\left(S_{m-k}=b-a\right)
$$

